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Abstract: In this paper, we introduced two novel subclasses of bi-univalent functions, Ms(a, B(x, £))
and Hs(a,u, B(x,£)), utilizing Lucas-Balancing polynomials. Within these function classes, we
established bounds for the Taylor-Maclaurin coefficients |a,| and |as|, addressing the Fekete-Szego
functional problems specific to functions within these new subclasses. Moreover, we illustrated how
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1. Introduction

Let A denote the set of all functions f, which are analytic in the open unit disk U = {£ : & €
C and |¢] < 1} and has a Taylor-Maclaurin series expansion given by

fO =€+ ) at', €. (1)
n=2

Additionally, functions in A are normalized by the conditions f(0) = f’(0) — 1 = 0. Let S denote
the set of all functions f € A which are univalent in U. For f, g € A, we say f is subordinate to g
if there exists a Schwarz function A(¢) such that h(0) = 0, |h(€)| < 1, and f(£) = g(h(€)) for & € U.
Symbolically, this relationship is denoted as f < g or f(£) < g(¢) for € € U. Miller et al. [1] state that
if the function g is univalent in U, then the subordination can be equivalently expressed as f(0) = g(0)
and f(U) c g(U). The Koebe one-quarter theorem [2] guarantees the existence of an inverse function,
denoted as !, for any function f € S, satisfying the following conditions:
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1
U@ =6 € £(71m) =w (<) 2 ). (1.2)

where,

gw) = f'(w) = w—aw? + a3 — a3)w’ — (5a; — Sazas + a)w' + - - - . (1.3)

A function f € A is considered bi-univalent within the domain U if both the function f and its
inverse f~! are one-to-one within U. Let T denote the set of bi-univalent functions within the domain
U, as specified by Eq (1.1).

Here, we present several examples of functions belonging to the class £ which have significantly
reinvigorated the study of bi-univalent functions in recent years:

) = 1%.;’ &) =—log(1-&) and f(&) = %bg (i—tg)
with their respective inverses
o= Fw=""1 aa flon=S"1
l+w 72 e” 3 e + 1
However, the Koebe function denoted by K (&) = (1—55)2 does not belong to the class X because it maps

the open unit disk U c C to K(U) = C\(—oo, —i], which does not include U.

The most significant and thoroughly investigated subclasses of S are the class S*(d) of starlike
functions of order ¢ € [0, 1) and the class, K(d) of convex functions of order ¢ in the open unit disk
U, which are respectively defined by

S (6) := {f:feS and Re{f}zg)} >0,(€elU;, 0<6< 1)}
and
K@) := {f:feS and Re{1+§]]:,(g)}>6, (£elU; 0<6< 1)}.

Fekete and Szego [3] established a fundamental finding regarding the maximum value of |a3 - na§|
within the class of normalized univalent functions defined in (1.1), where 5 is a real parameter.
Subsequent studies have expanded upon this, investigating |a3 - r)a§| for various classes of functions
defined in terms of subordination. Numerous authors have made significant strides in establishing
tight coefficient bounds for diverse subclasses of bi-univalent functions, often intertwined with specific
polynomial families (see [4—13]).

In [14], Behera and Panda introduced a novel integer sequence called Balancing numbers. These
numbers are defined by the recurrence relation B,,; = 6B, — B,_; for n > 1, with initial values
By = 0 and B; = 1. Several researchers have explored these new number sequences, leading
to the establishment of various generalizations. Comprehensive information on Lucas-Balancing
numbers and their extensions can be found in [15-23]. One notable extension is the Lucas Balancing
polynomial, which is recursively defined as follows:

AIMS Mathematics Volume 9, Issue 7, 18034—-18047.



18036

Definition 1.1 (Lucas-Balancing Polynomials, [24]). For any complex number x and integer n > 2,
Lucas-Balancing polynomials are defined recursively as follows:

C(x) = 6xCy1(x) — Cya(x), (1.4)
where the initial conditions are given by:
Co(x) =1, Ci(x)=3x. (1.5)
Using the recurrence relation (1.4), we can derive the following expressions:
Ca(x) = 18x* =1 C3(x) = 108x" — 9x. (1.6)

Lucas-Balancing polynomials, like other number polynomials, can be derived through certain
generating functions. One such generating function is expressed as follows:

Lemma 1.1. [24] The generating function for Balancing polynomials can be represented as

1 —3x¢

T—6x+2 40

Bx,) = ) Cux)¢" =
n=0

where x is within the range [—1, 1], and ¢ is in the open unit disk U.

A recently published paper by Hussen and Illafe [25] employs a novel approach utilizing the linear
combination of two distinct subclasses, starlike and convex functions, associated with Lucas-Balancing
polynomials Ng(B(x, z)). They aim to determine the Taylor-Maclaurin coefficients, |a,| and |as],
while addressing the Fekete-Szego functional inequality. In this paper, we extend this investigation
by exploring alternative subclasses connected with Lucas-Balancing polynomials.

Lemma 1.2. [2] Let Q be the class of all analytic functions, and let w € Q with w(§) =
Dimey Wpé", & € D. Then,
lwil <1, s < 1= |wi* for neN\{1}.

2. Coefficient bounds of the class My (a, B(x, £))

Embarking on our exploration, we aim to introduce and define a distinct class of bi-univalent
functions. This novel subclass, denoted as Ms(a, B(x,£)), will expand our understanding and
contribute to the evolving landscape of mathematical analysis in the domain of bi-univalent functions.

Definition 2.1. A function f € £ given by (1.1), witha € [0,1] and x € (%, 1], is said to be in the
class Ms(a, B(x,&)) if the following subordinations are satisfied

&€, EI©
fo e

< B(x,¢) 2.1

and
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wg'(w) | wig(w)

B(x,w), 2.2
2(w) oy ) 2

where the function g(w) = f~'(w) is defined by (1.3) and B(x,&) is the generating function of the
Lucas-Balancing polynomials given by (1.7).

Example 2.1. A bi-univalent function f € X is said to be in the class Ms(0, B(x,&)), if the following
subordination conditions hold:

Ef(&)
B(x. 23
7@ < B(x,&) (2.3)
and
W& g, (2.4)
gw)

where the function g = f~' is defined by (1.3).
Theorem 2.1. Let f given by (1.1) be in the class Ms(a, B(x,&)). Then,

IC1()] VICT)]
JM+mmauW—a+&NQwﬂ

la| <

and

273 3x

las| < + )
|922(1 + 4e) — (1822 = D)(1 +22)?|  2(1 + 3a)

Proof. Given that f € Ms(a, B(x,£)), where 0 < a < 1, it follows from Eqs (2.1) and (2.2) that

&r@ | a§2f (&)

i) J©&)

= B(x, u(£)) (2.5)

and

wg'(w)  wig”(w)
+ o
gw) gw)

= B(x,v(w)), (2.6)

where g(w) = f~!(w) and u, v € Q are given to be of the form

(59

u@ =y c,&" and  vw)= ) d,w". 2.7)
n=1

n=1

Utilizing Lemma 1.2 yields the following inequality
lcul <1 and |d,| <1, neN. (2.8)
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By replacing the expression of B(x, &) as defined in  (1.7) into the respective right-hand sides of

Eqgs (2.5)and (2.6), we obtain

B(x,u@) = 1 + Ci(x)eié + [C1(x)er + Cox)e} | € + [ Ci(x)es + 2Ca(x)ercr + Co()c} | € + -+ (2.9)

and

B(x,v(w) = 1 + Ci(N)dyw + |C1(0)dy + Co(x)d] | w? + [Ci(x)ds + 2Co(x)dydy + C3(x)d3 | w? + -+

Therefore, Eqs (2.5) and (2.6) become

1+ aré + Qaz — a)é* + (a3 — 3aras + 3a)é + - -

+ a2 + (6a3 - 2)¢* + 2(a} — 4aras + 6| + -

=1+ Ci(®)cié +|Ci(0)ez + C)e] | € + | Ci(x)es + 2Cx(x)eicr + C3(x)c} | €6+ -+

and
1 —aw+ (3a§ —2a;)w* + (—10ag + 12ara;3 — 3agw’ + - -

+ o[ -2ayw + (1083 — 6a3)w* + (—46a3 + S2ara3 — 12a,)w’| + -+

=1+ Ci(@)dyw + [Ci(x)ds + Co(x)d} | W + | C1(0)ds + 2Co(x)ddy + C3(x)d; | w + -

By equating the coefficients in Eqs (2.11) and (2.12), we obtain

(1+2a)a, = Ci(x)cq,
2(1 + 3a)as — (1 +2a)a; = Ci(x)c; + Ca(x)c?,
- (1 + 201)a2 = C]()C)d]

and
(3 + 10a)a? — 2(1 + 3a)az = Ci(x)d, + Cy(x)d?.

Utilizing Eqs (2.13) and (2.15) we derive the subsequent equations
Ccl1 = —d]

and ),
5 2 2(1 + 2a)°a;
(Ci(x)
Moreover, utilizing Eqs (2.14), (2.16) and (2.18) results in

(2.10)

(2.11)

(2.12)

(2.13)
(2.14)
(2.15)

(2.16)

(2.17)

(2.18)
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(C1(x)) (cz + da)

2 — . 2.19
“ 2[(1 +4a)(Ci(x)* — (1 + 2a)>Cy(x)] ( )
Utilizing Lemma 1.2 and examining Egs (2.13) and (2.17), we can deduce
C 3
sl < ) : (2.20)
|(1+4a)(Ci ()2 = (1 + 20)2C5(x)|
consequently,
C VIC
] < IC1 (0] VIC1(x)] 2.21)

\/|(1 +4)(C1(x)) — (1 + 20)°Co()|

Replacing the expressions for C;(x) and C,(x), as given in (1.5) and (1.6), respectively, into
Eq (2.21) results in the following

3xV3x

las| < )
\/|9x2(1 +4a) - (18x2 = 1)(1 + 20)?]

By subtracting Eq (2.16) from Eq (2.14), we obtain

,  Ci(x)(er —dy)

= 222
GO0 1 30) (222)
This results in the following inequality
ICi (D)l |e2 — dy
< lap)? + ————=. 2.23
las| < la| 21+ 30) (2.23)
Applying Lemma 1.2, utilizing (1.5) and (1.6) we obtain
273 3
jas| < al P (2.24)
|922(1 + 4e) — (1822 = I)(1 +22)?| 21 + 3a)
The proof of Theorem 2.1 is thus concluded.
O

3. Fekete-Szego functional estimations of the class My (a, B(x, §))

Within this section, the utilization of a% and as serves as a crucial tool in establishing the Fekete-
Szegd inequality applicable to functions belonging to Ms(a, B(x,£)). This mathematical endeavor
leverages these specific coefficients to derive insightful results within this functional space.

Theorem 3.1. Let f given by (1.1) be in the class Ms(a, B(x,&)). Then,

3x . 1
o < Ee if 0<Ihm| < 3755
6xlh(l if  1h(p] 2 37
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where
9x*(1 —n)

2[9x2(1 + 4a) — (18x2 — 1)(1 + 2)?]
Proof. Based on Eqs (2.19) and (2.22), we obtain

Ci(x)(c2 — d>) )

h(n) =

613—7’]03 :a2+w—na2
C —-d
= (= + 14(12(?304) 2)
_ (C1(0) (2 + db) Ci(x)(c2 — dy)
=-n

+
2[(1 +4a)(Ci(x))? = (1 +2a)*Cr(x)] 4(1 + 3a)

= (€1 + 2+ [ -

mi—aa)]c mw’

where

(C1(0))*(1 =)
2 [(1 +4a)(Ci(x)* = (1 + Za)ZCZ(x)]'

h(n) =

Then, in view of (1.5), (1.6), and utilizing (2.8), we can conclude that

3x :
|a3 B a2| < ] 20+ if  0<|h(l < 4(1+3<r)’
6x|hGpl if R 2 73355 +3(,)-

The proof of Theorem 3.1 is thus concluded.

Following our previous discussion, our subsequent step involves introducing a corollary.

Corollary 3.1. [25] Let f given by (1.1) be in the class Ms(0, B(x,&)). Then,

3xV3x
lay| £ ———,
|1-9x2|
| 273 3x
az| <
’ |1 - 9x2| 2
and
3 ¢0<mwuw
|"3 —na 2|
6XIh1(77)| if Gl > 1,
where
o = 224 =M 9x2(1—77)

AIMS Mathematics Volume 9, Issue 7, 18034—-18047.



18041

4. Coefficient bounds of the class Hy(a, u, B(x, £))

In this section, we introduce and define another distinct class of bi-univalent functions. Denoted
as Hx(a, u, B(x,£)), this new subclass enriches our comprehension and advances the domain of bi-
univalent functions in mathematical analysis.

Definition 4.1. A function f € X given by (1.1), with a,u € [0,1] and x € (%, 1], is said to be in
the class Hs(a, u, B(x,£)) if the following subordinations are satisfied

(I-a+ 2#)% + (@ =21 (&) + uEf7(6) < B(x, ) (4.1)

and
1-a+ 2;1)%:}) + (@ = 2u)g' (W) + uwg” (w) < B(x, w), 4.2)

where the function g(w) = f~'(w) is defined by (1.3) and B(x,&) is the generating function of the
Lucas-Balancing polynomials given by (1.7).

Example 4.1. A bi-univalent function f € X is said to be in the class Hs(a,0, B(x, &) if the following
subordination conditions hold:

f(&)

(I- 0/)? +af'(€) < B(x,§) 4.3)
and
(1- a)&;}) +ag'(w) < B(x,w), 4.4)

where the function g = f~' is defined by (1.3).

Example 4.2. A bi-univalent function f € X is said to be in the class Hs(1,0, B(x, £)) if the following
subordination conditions hold:

f'©) < B(x,&) (4.5)

and

g'w) < B(x,w), (4.6)
where the function g = f~' is defined by (1.3).
Theorem 4.1. Let f € X of the form (1.1) be in the class Hs(a, u, B(x,&)). Then,

3xV3x
\/|9x2(1 +2a +2u) — (18x> — 1)(1 + a/)2|

las| <

and

27x3 . 3x
|9x2(1 + 20 +2u) — (18x2 — I)(1 + @)?| (1 +2a+2p)

las| <
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Proof. Assuming f belongs to Hs(a, u, B(x,£)), where 0 < a, u < 1, Eqs (4.1) and (4.2) imply that

(l-a+ 2/1)% b (@ = 201 + pEf"(€) = Blx, u(®) @.7)
and
(1-a+ 2;1)%” + (@ = 218’ (W) + pwg” (w) = B(x, v(w)), (4.8)

where g(w) = f~!(w) and u, v € Q are defined in (2.7).

Upon substituting the definition of B(x, &) from (1.7) into the right-hand sides of Eqs (4.7) and (4.8),
we obtain

Blx,u(€)) = 1+ (D)€ + | Ci(x)er + Co(0e | £

(4.9)
+[C10es + 20016, + C(x)c] | € + -+
and
Bx,v(w)) = 1 + Ci(x)dyw + [Cl(x)a’z + Cg(x)df] w? “.10)
+|Ci1(0)ds +2Co(x0)dydy + Cy(0)di | w? + - '
Hence, Eqs (4.7) and (4.8) become
(1 —a+2u)(1 + aé +azé + ae® +---)
+ (@ =211 + 2a0¢ + 3a38% + dasé® +--)
+ uéEQay + 6az¢ + 12a,8 + -+ +)
= 1+ Ci(W)cié + [Ci®)e + C)et | € + [Ciw)es + 202 (0er1ey + C(x)ci [ € + -+
4.11)
and
(1 —a+2u)(1 — aw + a5 — az)w* — (5a3 — Saraz + ay)w® + -+ )
+ (@ = 2u)(1 = 2a,w + 3(2(1% —ayw? - 4(5a§ — Sayaz + a)w® +---)
+ ué( = 2a, + 6(2a§ —az)w — 12(5ag — Saraz + a)w* +---)
=1+ Ci(@dyw + [Ci(0)ds + Cox)dr | W + | C1(0)ds + 2Co(x)didy + C3(x)d; | w + -
(4.12)
When equating the coefficients in Eqs (4.11) and (4.12), we get
(1 + @)a, = Ci(x)cq, 4.13)
(1 + 2a + 2u)az = C1(x)cy + Ca(x)ct, (4.14)
—(1+a)a, = C,(x)d; (4.15)
and
2(1 + 2a + 2u)az — (1 + 2a + 2u)az = C1(x)dy + Co(x)d>. (4.16)

AIMS Mathematics Volume 9, Issue 7, 18034—-18047.
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With the utilization of (4.13) and (4.15), we derive the following equations

¢ = —d, 4.17)
and
2(1 + @)*d?
S S (4.18)
(C1(x)
Additionally, applying Eqs (4.14), (4.16) and (4.18) results in
) (C1(0) (2 +do)
a, = . (4.19)
2[(1+2a + 2u)(C1(x))*> = (1 + @)*Ca(x)]
By employing Lemma 1.2 and analyzing Eqs (4.13) and (4.17), we can deduce
Ci(x)P
@l < i) : (4.20)
|(1+ 20 + 2u)(C1(0))% = (1 + @)2Co(x)|
therefore
C C
ol < (01 VT @an)

\/|(1 + 20 + 2u)(C1(x))? — (1 + a)zcz(x)|.

When substituting C(x) and C,(x) as provided in (1.5) and (1.6) into Eq (4.21), it results in
the following expression

3xV3x

|Clz| < .

\/|9x2(1 +2a +2u) — (18x2 = 1)(1 + a)?]

By subtracting Eq (4.16) from Eq (4.14), we obtain:

2 Ci(x)(c2 — d»)

= — s = 4.22
BT 0 20+ 2p) “22
Consequently, this results in the following inequality
|C1(0)]|ex — dbl
<lapf* + =, 4.23
las| < lax| 21+ 20 + 20) (4.23)
By employing Lemma 1.2 and utilizing (1.5) and (1.6), we obtain
273 3
jas| < a + N (4.24)
|922(1 + 20 + 2u) — (18x2 = 1)(1 + @)?| (1 +2a +2p)
The proof of Theorem 4.1 is thus concluded. O
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5. Fekete-Szego functional estimations of the class Hy(a, u, B(x, £))

In this section, the utilization of the values of a; and a; assists in deriving the Fekete-Szegd

inequality applicable to functions f € Hs(a, u, B(x, £)).
Theorem 5.1. Let f € X given by the form (1.1) be in the class Hs(a, u, B(x,&)). Then,

| a5 —770§| < ] 202 lf o)l %(1+2a+2;1)
6xlh(m| if  1h(D| 2 5735770
where
h(n) = 9x*(1 — 1)
= 2[9x2(1 + 2a + 2u) — (18x2 = 1)(1 + @)?]’
Proof. Equations (4.19) and (4.22) yield
Ci(x)(c2 — do)
o2 Gl —d) s
GG =S T e oy
Ci(x)(c2 — do)

_ _ 2
= =ma+ S e 20
_ (C1(0) (2 + o) Ci(x)(c2 — dy)
=(l-n +
201+ 2a + 20)(C1(0)) — (1 + @PC(0)] * 2(1 + 2a + 2u)
1 1
- (Cl(x))([h(") T2+ 20+ 2;1)]62 " [h(") T2+ 2a+ 2,1)]‘12)’
where )
h(n) = (C1(0) (1 =)
P =210+ 20 + 20(Ci(0)2 — (1 + aPC0)]

Considering (1.5), (1.6) and applying (2.8), we can deduce that
it 0<h()| < 57

3x
_ 2 1+2a+2u 2(1+2a+2u)°
o "“2|S{6x|h( i 1RO 2 e
n 2 502am°

The proof of Theorem 5.1 is thus concluded.
Corollary 5.1. Let f € X given by the form (1.1) be in the class Hsz(a,0, B(x,&)). Then,
3xV3x

|as| < ,
021 +20) - (1822 = 1)(1 + )

273 3x
las| < +
|92(1 +20) - (1822 = D(1 + @)?| 1 +2¢
and
3x . 1
|(l3 _ T]a§| < 1+2a lf | 2(77)| 1 2(1+2a)
6xla)l  if  1ha()| = 5.
where

9x%(1 - n)
9x2(1 +2) — (1822 — D(1 + @)?]

hy(n) = 3 [
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Corollary 5.2. Let f € X given by the form (1.1) be in the class Hs(1,0,B(x,&)). Then

3xV3x
lay| £ ——,
|4 — 4522
] < 273 X
a L — —_
S VRTINS
and
: if 0<lhsnl <4,
|Cl3 - n §| < 3 . 1 6
oxlhs(m| if  |hs(m] = 5,
where )
9x°(1 —n)
h =
0D = 3G 457

6. Conclusions

We introduced two novel subclasses of bi-univalent functions within the open unit disk U, namely
Ms(a, B(x,&)) and Hz(a, u, B(x,£)), employing Lucas-Balancing polynomials. Our investigation
delves into the initial estimates of the Taylor-Maclaurin coefficients |a,| and |a3].

Furthermore, by utilizing of ag and a; a crucial tool, we established the Fekete-Szego inequalities
|a3 - na§| for functions belonging to Ms(a, B(x, £)) and Hs(a, u, B(x, £)).

Moreover, by appropriately specializing the parameter, we obtained new results for the subclasses
Ms(0, B(x, ), Hs(a,0,B(x,&)), and Hs(1,0, B(x, £)), defined in Examples (2.1), (4.1), and (4.2),
respectively. These results establish connections between these subclasses and the Lucas-Balancing
Polynomials. Utilizing these subclasses, we derive estimations for the Taylor-Maclaurin coeflicients
|ay| and |as|, and investigate the Fekete-Szego inequalities.
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